Complete convergence for negatively orthant dependent random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables

We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.

متن کامل

Rosenthal’s Type Inequalities for Negatively Orthant Dependent Random Variables

In this paper, we obtain some Rosenthal’s type inequalities for negatively orthant dependent (NOD) random variables.

متن کامل

Complete convergence for negatively dependent random variables

Let {Xn, n ≥ 1} be a sequence of independent and identically random variables. In 1947 Hsu and Rabbins proved that if E[X] = 0 and E[X2] < ∞, then 1 n ∑n k=1Xk converges to 0 completely. Recently, the strong convergence of weighted sums for the case of independent random variables has been discussed by Wu (1999), Hu and et. (2000, 2003) proved the complete convergence theorem for arrays of inde...

متن کامل

Complete Convergence for Negatively Dependent Random Variables

Let {Xn, n ≥ 1} be a sequence of i.i.d., real random variables. Hsu and Rabbins [5] proved that if E(X) = 0 and E(X) < ∞, then the sequence 1 n ∑n i=1 Xi converges to 0 completely. (i.e., the series ∑∞ n=1 P [|Sn| > nε] < ∞, converges for every ε > 0). Now let {Xn, n ≥ 1} be a sequence of negatively dependent real random variables. In this paper, we proved the complete convergence of the sequen...

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2014

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2014-145